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Abstract—Ruthenium benzylidene complex (H2IMes)(2-CH3–C5H4N)(Cl)2Ru@CHPh [H2IMes = 1,3-bis(2,6-dimethylphenyl)-4,5-
dihydroimidazol-2-ylidene] (4), which introduced ortho substituted pyridine as dissociating ligand to weaken Ru–N bond and accel-
erate initiation through steric hindrance, was prepared by the reaction of (H2IMes)(PPh3)(Cl)2Ru@CHPh (1) with 2-methylpyridine
and proved to exhibit enhanced catalytic activity for cyano-contained olefin metathesis.
� 2007 Elsevier Ltd. All rights reserved.
In the last decades, olefin metathesis has become a most
powerful tool for the formation of carbon–carbon
bonds and has proved to be extremely useful in organic
synthesis facilitated by the development of highly active
ruthenium carbene catalysts.1 Compared to molybde-
num alkylidene catalysts,2 ruthenium-based metathesis
catalysts exhibit remarkable air and water stability, sig-
nificant functional group tolerance, and thus have
gained major attention.3 However, many substrates con-
taining cyano or/and strong base functional groups
remained challenging because of their proneness to
deactivate or destroy such catalysts.4

Two resolutions to this problem have been developed.
Firstly, employment of exquisite fast-initiating catalyst,
such as Hoveyda–Grubbs type ruthenium alkylidene
complexes,5 bispyridine complexes,6 and bis(3-bromo-
pyridine) complexes.7 Previous studies suggested that
catalyst efficiency during cyano-contained olefin meta-
thesis are related to dissociation rates of ligands.8 Cata-
lysts bearing those easily dissociated ligands could
initiate fast, consequently, showed enhanced catalytic
activity. Secondly, introduction of appropriate additives
to disable the functional groups’ coordination to the cat-
alytically active center and maintain intrinsic catalyst
efficiency.9

Activity of metathesis catalysts, which mainly depends
on the rates of initiation and rebinding of the dissociated
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ligands, could be improved by properly tuning the nat-
ure of the dissociating ligands. In pyridine derivative
complexes, tuning the electronics of the pyridine ligand
by substitution of pyridine with 3-bromopyridine has
resulted in the successful development of an excellent
catalyst capable of performing acrylonitrile CM with
high efficiency.7 Our efforts focused on steric tuning of
pyridine ligand in catalyst design and using it for cya-
no-contained olefin metathesis.

In this work, ortho substituted pyridine was chosen as
dissociating ligand. Although electron-sufficient, it is
speculated that ortho methyl group would weaken coor-
dination of pyridine to ruthenium atom because of steric
hindrance. Therefore, it would accelerate the dissocia-
tion and/or slow rebinding of pyridine ligand. Accord-
ing to a protocol used to obtain similar complexes 2
and 3, 2-methylpyridine ruthenium benzylidene complex
4 was prepared by reaction of complex 1 with larger ex-
cess of 2-methylpyridine (�100 equiv) for 12 h (Scheme
1). The product was isolated in 84% yield and character-
ized by detailed spectroscopic studies.10 2,4-Dimethyl-
pyridine ruthenium benzylidene complex 5 was easily
accessible relative to complex 4.10 Unfortunately, reac-
tions of complex 1 or 2 with 2,6-dimethylpyridine or
2-bromopyridine failed to yield corresponding complex,
which might result from excessively weakening coordi-
nation ability of pyridine ligand. Although bispyridine
complexes were considered to form preferentially to
monopyridine complexes, X-ray crystallography of
complex 211 and 1H NMR, MS analysis of complexes
2–5 obviously showed monopyridine coordination in
our study.
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Scheme 3. CM reaction of acrylonitrile with a-olefins.

Table 2. CM reaction of acrylonitrile with a-olefins catalyzed by 2–5a

Entry Catalyst n Yieldb (%) E/Zc

1 2 5 56 1:3.2
2 3 5 75 1:2.1
3 4 5 81 1:2.8
4 5 5 70 1:3.0
5 2 7 67 1:3.0
6 3 7 83 1:1.9
7 4 7 95 1:2.9
8 5 7 76 1:3.0

a 0.1 M acrylonitrile (1.0 equiv) in CH2Cl2, a-olefins (2.0 equiv), cata-
lyst (2 mol %), 40 �C, 12 h.

b Isolated yield.
c Ratios determined by means of 1H NMR spectroscopy.
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Scheme 1. Preparation of pyridine-ligated metathesis catalysts. Mes =
2,6-dimethylphenyl.
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Initiation rates of catalysts 2–4 were measured qualita-
tively by tandem mass spectroscopy.12 When the sam-
ples were delivered to the ionization source in CH2Cl2/
CH3CN solutions and the collision cone voltage was
3 V, [M�Cl+CH3CN]+ cation was found as base peak
for complexes 2, 3. However, under the same conditions,
an evident peak (m/z 586.9) was detected for complex 4,
which was attributed to [M�Cl�py+2CH3CN]+ spe-
cies. The difference might be explained by different labil-
ity of the dissociated ligands. That is to say, the pyridine
dissociation of 4 was carried out more easily than that of
2 and3, therefore catalyst 4 initiated faster than catalysts
2 and 3, which implied higher catalytic activity of com-
plex 4 for the above-mentioned challenging substrates.

Diallylmalononitrile was chosen to evaluate catalytic
ability of complexes 1–5 to mediate RCM reaction of
cyano-contained substrate (Scheme 2, Table 1).13 Com-
plex 1 showed low conversion even with high catalyst
load mainly because of its relatively slow initiation.
Compared with modest conversion for complex 2, com-
plex 4 exhibited higher and faster performance on diall-
ylmalononitrile RCM with relatively low catalyst load.
Importantly, even though catalyst load reached to
0.2 mol %, 96% conversion could be obtained in 1 h.
Complexes 3 and 5 also showed good performance
although inferiority to complex 4.
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Scheme 2. RCM reaction of diallylmalononitrile.

Table 1. RCM reaction of diallylmalononitrile catalyzed by 1–5a

Entry Catalyst Cat. (mol %) Time (h) Conversionb (%)

1 1 5 12 44
2 2 1 1 70
3 3 0.5 1 95
4 4 0.5 <0.5 99
5 4 0.2 1 96
6 5 0.5 1 93
7 5 0.2 1 90

a 0.1 M diallylmalononitrile in CH2Cl2, 40 �C.
b Conversion was determined by GC and confirmed by 1H NMR.
Complexes 2–5 were also tested for their capability to
conduct CM reaction between acrylonitrile and a-olefins
(Scheme 3, Table 2).14 Under the same conditions, the
cross-metathesis products were formed in 67%, 83%,
95% and 76% yield when acrylonitrile and 1-decene were
treated with catalysts 2, 3, 4 and 5, respectively. Interest-
ingly, when 1-octene was employed, lower yields were
obtained. In cross-metathesis products Z selectivity
was preferential to E selectivity which could be probably
ascribed to the kinetically controlled process. Complex 4
still showed the highest catalytic efficiency, presumably
because dissociation of stereo-hindered 2-methylpyri-
dine was rapid and/or rebinding of it was slow. The elec-
tron-donating effect of para methyl group probably
caused relatively slow dissociation and/or rapid rebind-
ing of 2,4-dimethylpyridine. Complex 5 only provided
modest yield compared with complex 4.

In conclusion, we have shown that steric tuning of disso-
ciating ligand resulted in a novel catalyst which exhib-
ited high catalytic activity for RCM reaction of
diallylmalononitrile and CM reaction of acrylonitrile
with terminal olefins. New complex (H2IMes)(2-CH3–
C5H4N) (Cl)2Ru@CHPh offers an alternative catalyst
to perform metathesis reaction of cyano-containing
olefins.
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